Two-Level Latent Class Analysis with Bayesian Inference

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regularized Bayesian Inference and Infinite Latent SVMs Bayesian Inference with Posterior Regularization and applications to Infinite Latent SVMs

Existing Bayesian models, especially nonparametric Bayesian methods, rely on specially conceived priors to incorporate domain knowledge for discovering improved latent representations. While priors can affect posterior distributions through Bayes’ theorem, imposing posterior regularization is arguably more direct and in some cases can be more natural and easier. In this paper, we present regula...

متن کامل

Using Bayesian Priors for More Flexible Latent Class Analysis

Latent class analysis is based on the assumption that within each class the observed class indicator variables are independent of each other. We explore a new Bayesian approach that relaxes this assumption to an assumption of approximate independence. Instead of using a correlation matrix with correlations fixed to zero we use a correlation matrix where all correlations are estimated using an i...

متن کامل

Bayesian Inference for Latent Hawkes Processes

Hawkes processes are multivariate point processes that model excitatory interactions among vertices in a network. Each vertex emits a sequence of discrete events: points in time with associated content, or marks. Unlike Poisson processes, Hawkes processes allow events on one vertex to influence the subsequent rate of events on downstream vertices. With this property, they are ideally suited to ...

متن کامل

Bayesian inference for latent variable models

3 Abstract Bayes’ theorem is the cornerstone of statistical inference. It provides the tools for dealing with knowledge in an uncertain world, allowing us to explain observed phenomena through the refinement of belief in model parameters. At the heart of this elegant framework lie intractable integrals, whether in computing an average over some posterior distribution, or in determining the norm...

متن کامل

An application of Measurement error evaluation using latent class analysis

‎Latent class analysis (LCA) is a method of evaluating non sampling errors‎, ‎especially measurement error in categorical data‎. ‎Biemer (2011) introduced four latent class modeling approaches‎: ‎probability model parameterization‎, ‎log linear model‎, ‎modified path model‎, ‎and graphical model using path diagrams‎. ‎These models are interchangeable‎. ‎Latent class probability models express l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Kodo Keiryogaku (The Japanese Journal of Behaviormetrics)

سال: 2007

ISSN: 0385-5481,1880-4705

DOI: 10.2333/jbhmk.34.21